TD2: Nombres complexes

Nombre complexe - Forme cartésienne

Exercice 1

Mettre les nombres suivants sous la forme a + ib où $a \in \mathbb{R}$ et $b \in \mathbb{R}$.

1.
$$(5-i)(7+2i)$$

2.
$$(i-1)(3+7i)$$

3.
$$(1+i)^2$$

4.
$$(1+i)^4$$

5.
$$\frac{1}{1-i}$$

6.
$$\frac{i}{1+2i}$$

7.
$$\frac{3+6i}{4-2i}$$

8.
$$\frac{7-8i}{9+4i} + \frac{7+8i}{9-4i}$$

Exercice 2

Déterminer le nombre conjugué des nombres complexes suivants.

1.
$$3 - 4i$$

2.
$$\sqrt{7}i - \sqrt{2}$$

3.
$$(1+i)^2$$

4.
$$\frac{1}{1-i}$$

5.
$$\frac{i}{1+i}$$

6.
$$\frac{3+6i}{4-3i}$$

7.
$$\frac{7-8i}{9+4i} + \frac{7+8i}{9-4i}$$

Exercice 3

Soient $z_1 = 7 + 15i$ et $z_2 = -9 + i$. Déterminer la partie imaginaire de $z_1, z_2, z_1 + z_2, \overline{z_1} \times z_2$ et $\frac{z_2}{\overline{z_1}}$.

Exercice 4

Déterminer les racines des polynômes suivants dans \mathbb{C} .

1.
$$x^2 + x + 1$$

2.
$$x^2 - x + 1$$

3.
$$2x^2 + 4x + 2$$

4.
$$-x^2 + 2x - 3$$

5.
$$x^2 + 1$$

6.
$$x^2 + 3x + 1$$

Exercice 5

Déterminer les racines carrés des nombres complexes suivants.

- 1. 1
- 2. i
- 3. 3 + 4i

- 4. 8-6i
- 5. 7 + 24i
- 6. -1

Exercice 6

Déterminer les racines des polynômes suivants dans \mathbb{C} .

1.
$$z^2 - (1+2i)z + i - 1$$

2.
$$z^2 - \sqrt{3}z - i$$

3.
$$z^2 - (5 - 14i)z - 2(5i + 12)$$

4.
$$z^2 - (3+4i)z - 1 + 5i$$

5.
$$z^4 + 10z^2 + 169$$

6.
$$z^4 + 2z^2 + 4$$

Nombre complexe - Forme polaire

Exercice 7

Mettre les nombre suivants sous forme cartésienne.

3.
$$e^{i\vartheta} + e^{2i\vartheta}$$
 où $\vartheta \in \mathbb{R}$.

$$4. \frac{1}{1+e^{i\frac{\pi}{4}}}$$

2.
$$e^{1+i}$$

Exercice 8

Mettre les nombre suivants sous forme polaire.

1.
$$i - \sqrt{3}$$

2.
$$\sqrt{2}(1-i)$$

3.
$$7 + 7i$$

4.
$$\frac{1}{2} + \frac{i}{2}\sqrt{3}$$

Exercice 9

Déterminer le module et l'argument des nombres suivants.

5.
$$1 + i$$

6.
$$1 - i$$

7.
$$\sqrt{12} - 2i$$

7.
$$\sqrt{1}$$
 8. e^{i}

10. ie
$$\frac{\pi}{4}$$

11.
$$1 + 2e^{i\frac{\pi}{2}}$$

12.
$$i + e^{\frac{\pi}{4}}$$

Exercice 10

Calculer le module et l'argument des nombres $u=\frac{\sqrt{6}-i\sqrt{2}}{2}$ et v=1-i. En déduire le module et l'argument de $\frac{u}{v}$.

Exercice 11

Soient
$$z_1 = e^{i\frac{\pi}{3}}$$
 et $z_2 = e^{-i\frac{\pi}{4}}$.

- 1. Écrire z_1 et z_2 sous forme algébrique.
- 2. En déduire la forme exponentielle et cartésienne de z_1z_2 .
- 3. En déduire la valeur de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$

Exercice 12

Soient $\vartheta \in \mathbb{R}$ et $z = e^{i\vartheta}$. Déterminer le module et l'argument de 1+z et $1+z+z^2$.

Exercice 13

Déterminer la partie réelle, la partie imaginaire, le module et l'argument de $\frac{1}{1+e^{i\alpha}}$ où $\alpha \in [0;\pi[$.

2

Exercice 14

Déterminer la partie réelle, la partie imaginaire, le module et l'argument de $\frac{1}{1-e^{\mathrm{i}\alpha}}$ où $\alpha\in]0;\pi]$.

Exercice 15

- 1. Calculer le module et l'argument de $\frac{1+\mathfrak{i}}{\sqrt{2}}$.
- 2. Calculer les racines carrés de $\frac{1+i}{\sqrt{2}}$.
- 3. En déduire les valeurs de $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$.
- 4. En raisonnant de la même manière, trouver les valeurs de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

Exercice 16

Linéariser les expressions suivantes $(\vartheta \in \mathbb{R})$.

1. $\cos^2(\vartheta)$

4. $\cos(\vartheta)\sin^3(\vartheta)$

7. $\cos(\vartheta)\sin^4(\vartheta)$

2. $\sin^2(\vartheta)$

5. $\cos^2(\vartheta)\sin(\vartheta)$

8. $\sin^5(\vartheta)$

3. $\cos^2(\vartheta)\sin^2(\vartheta)$

- 6. $\cos^2(\vartheta)\sin^3(\vartheta)$
- 9. $\cos^6(\vartheta)$

Exercice 17

Délinéariser les expressions suivantes $(\vartheta \in \mathbb{R})$.

- 1. $cos(2\vartheta)$
- 2. $sin(3\vartheta)$
- 3. $cos(4\vartheta)$
- 4. $sin(5\vartheta)$